Boundary cells restrict dystroglycan trafficking to control basement membrane sliding during tissue remodeling
نویسندگان
چکیده
Epithelial cells and their underlying basement membranes (BMs) slide along each other to renew epithelia, shape organs, and enlarge BM openings. How BM sliding is controlled, however, is poorly understood. Using genetic and live cell imaging approaches during uterine-vulval attachment in C. elegans, we have discovered that the invasive uterine anchor cell activates Notch signaling in neighboring uterine cells at the boundary of the BM gap through which it invades to promote BM sliding. Through an RNAi screen, we found that Notch activation upregulates expression of ctg-1, which encodes a Sec14-GOLD protein, a member of the Sec14 phosphatidylinositol-transfer protein superfamily that is implicated in vesicle trafficking. Through photobleaching, targeted knockdown, and cell-specific rescue, our results suggest that CTG-1 restricts BM adhesion receptor DGN-1 (dystroglycan) trafficking to the cell-BM interface, which promotes BM sliding. Together, these studies reveal a new morphogenetic signaling pathway that controls BM sliding to remodel tissues.
منابع مشابه
Endocytic trafficking of laminin is controlled by dystroglycan and is disrupted in cancers.
The dynamic interactions between cells and basement membranes serve as essential regulators of tissue architecture and function in metazoans, and perturbation of these interactions contributes to the progression of a wide range of human diseases, including cancers. Here, we reveal the pathway and mechanism for the endocytic trafficking of a prominent basement membrane protein, laminin-111 (refe...
متن کاملNon-muscle alpha-dystroglycan is involved in epithelial development
The dystroglycan complex is a transmembrane linkage between the cytoskeleton and the basement membrane in muscle. One of the components of the complex, alpha-dystroglycan binds both laminin of muscle (laminin-2) and agrin of muscle basement membranes. Dystroglycan has been detected in nonmuscle tissues as well, but the physiological role in nonmuscle tissues has remained unknown. Here we show t...
متن کاملBasement membrane sliding and targeted adhesion remodels tissue boundaries during uterine–vulval attachment in Caenorhabditis elegans
Large gaps in basement membrane occur at sites of cell invasion and tissue remodelling in development and cancer. Though never followed directly in vivo, basement membrane dissolution or reduced synthesis have been postulated to create these gaps. Using landmark photobleaching and optical highlighting of laminin and type IV collagen, we find that a new mechanism, basement membrane sliding, unde...
متن کاملTissue Remodeling: Making Way for Cellular Invaders
Cellular invasion through protein matrices is a critical process during epithelial-mesenchymal transitions. A recent study of Caenorhabditis elegans vulval development reports a novel invasive mechanism in which cells coordinate spatially restricted degradation and sliding of a basement membrane during cellular ingression and tissue formation.
متن کاملDistribution of dystroglycan in normal adult mouse tissues.
Dystroglycan is a cell surface protein which, in muscle, links the extracellular matrix protein laminin-2 to the intracellular cytoskeleton. Dystroglycan also binds laminin-1 and the binding occurs via the E3 fragment of laminin-1. Recently, it was found that dystroglycan is expressed in developing epithelial cells of the kidney. Moreover, antibodies against dystroglycan can perturb epithelial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016